Temperature and Salinity Monitoring System for Shrimp Pond Water

Authors

  • Rahmat Gilang Zalvi Department of Electrical Engineering, Universitas Negeri Padang, Indonesia Author
  • Ali Basrah Pulungan Department of Electrical Engineering, Universitas Negeri Padang, Indonesia Author

DOI:

https://doi.org/10.24036/jiaee.v2.i2.pp36-40

Keywords:

IoT, Water Quality Monitoring, ESP32, Sensor, Blynk.

Abstract

Shrimp pond productivity is highly dependent on water quality, which is traditionally monitored manually through labor-intensive sampling and testing. This study proposes an IoT-based smart monitoring system to automate the assessment of water quality parameters such as temperature and salinity. The system employs an ESP32 microcontroller integrated with DS18B20 and salinity sensors. Sensor data are displayed in real time via a 4x20 LCD and the Blynk application. Two relays are included to automatically activate the aerator when temperature defined thresholds. Field testing over four days demonstrated sensor accuracy with error rates below 3%, stable data transmission, and effective automation. This system offers a reliable and efficient solution for shrimp farmers to monitor and manage water quality, potentially enhancing aquaculture productivity.

Downloads

Download data is not yet available.

References

[1] V. E. H. Annisa Amalia Awanis, Slamet Budi Prayitno and Departemen, “Kajian Kesesuaian Lahan Tambak Udang Vaname Dengan Menggunakan Sistem Informasi Geografis di Desa Wonorejo, Kecamatan Kaliwungu, Kendal, Jawa Tengah,” Bul. Oseanografi Mar., vol. 6, no. 2, pp. 102–109, 2017.

[2] M. S. Ardini, M. Muskhir, F. Ranuharja, and A. Luthfi, “Fish feeding control system and water pH monitoring in Tilapia fish ponds based on Internet of Things ( IoT ) using mini PC,” Journal of Industrial Automation and Electrical Engineering., vol. 01, no. 02, pp. 34–40, 2024.

[3] R. Lasabuda, “Pembangunan Wilayah Pesisir Dan Lautan Dalam Persfektif Negara Kepulauan Republik Indonesia Regional Developmentin Coastaland Ocean in Archipelago Perspective of The Republic of Indonesia,” J. Ilm. Platax, vol. I–2, pp. 92–101, 2013.

[4] A. Sofwan, D. A. Ajiputra, M. Arfan and I. Santoso, "Design of Classification of Shrimp Pond Water Quality Based on Random Forest Algorithm," 2024 International Seminar on Intelligent Technology and Its Applications (ISITIA), Mataram, Indonesia, 2024, pp. 322-326, doi: 10.1109/ISITIA63062.2024.10667998.

[5] C. Leigh et al, “Rice-shrimp ecosystems in the Mekong Delta: Linking water quality, shrimp and their natural food sources,” Science of The Total Environment, vol. 739, p. 139931, Oct. 2020, doi: 10.1016/j.scitotenv.2020.139931.

[6] A. Ulinuha and F. M. Febryan, "Remote Monitoring System of Water Quality for Shrimp Fishery Pond Based on Microcontroller," 2024 International Conference on Smart Computing, IoT and Machine Learning (SIML), Surakarta, Indonesia, 2024, pp. 8-12, doi: 10.1109/SIML61815.2024.10578096.

[7] J. D. Setiawan, Waryanto and R. Zulkarnain, "Automation Design for Detecting the Position of Vannamei Shrimps in a Miniature Pond using Sonar Sensors," 2023 10th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 2023, pp. 260-264, doi: 10.1109/ICITACEE58587.2023.10277405.

[8] P. Suwanno, P. Chansri and Y. Joothong, "IoT Assisted Oxygen Control Monitoring in Microbial Propagation for Shrimp Ponds," 2023 International Electrical Engineering Congress (iEECON), Krabi, Thailand, 2023, pp. 285-288, doi: 10.1109/iEECON56657.2023.10127007.

[9] J. Zhang and D. Kitazawa, "Measurement of water current field created by paddle wheel aerators in shrimp culture pond," OCEANS 2016 - Shanghai, Shanghai, China, 2016, pp. 1-4, doi: 10.1109/OCEANSAP.2016.7485560.

[10] M. H. Ridwan, M. Yuhendri, and J. Sardi, “Sistem Kendali Dan Monitoring Pompa Air Otomatis Berbasis Human Machine Interface,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 592–600, 2023.

[11] M. Musa, E. D. Lusiana, N. R. Buwono, S. Arsad, and M. Mahmudi, “The effectiveness of silvofishery system in water treatment in intensive whiteleg shrimp (Litopenaeus vannamei) ponds, Probolinggo District, East Java, Indonesia,” Biodiversitas, vol. 21, no. 10, Sep. 2020, doi: 10.13057/biodiv/d211031.

[12] H. P. Ramadhan, C. Kartiko, and A. Prasetiadi, “Monitoring Kualitas Air Tambak Udang Menggunakan Metode Data Logging,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 1, 2020, doi: 10.28932/jutisi.v6i1.2365.

[13] Y. A. Putra and M. Yuhendri, “Smart Monitoring Pompa Air Otomatis Berbasis Human Machine Interface Dan Internet Of Things,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 863–876, 2023.

[14] D. Wahyu and U. Muhamad Bahrul, “Rancang Bangun Sistem monitoring. Kualitas air pada Budidaya Ikan Hias Air Tawar Berbasis Iot (Internet.of Things),” J. Komputasi, vol. Vol 9, no. 2, pp. 67–75, 2021.

[15] R. S. Utami, Roslidar, A. Mufti, and M. Rizki, “Sistem kendali dan pemantau kualitas air tambak udang berbasis salinitas, suhu, dan ph air,” J. Komputer, Inf. Teknol. dan Elektro, vol. 8, no. 1, pp. 43–48, 2023.

Downloads

Published

2025-12-01

How to Cite

Temperature and Salinity Monitoring System for Shrimp Pond Water. (2025). Journal of Industrial Automation and Electrical Engineering, 2(2), 36-40. https://doi.org/10.24036/jiaee.v2.i2.pp36-40

Similar Articles

1-10 of 72

You may also start an advanced similarity search for this article.