Variable speed control of DC motor using four quadrant controlled rectifier based on Human Machine Interface
Keywords:
Variable speed control , DC motor , Four quadrant , Controlled rectifier , Human Machine InterfaceAbstract
Various industrial equipment uses dc motors as its drive. In order for the dc motor to operate as needed, it needs to be controlled. Some of the controls applied to dc motors include control of rotation direction, speed, braking, and starting current starting. This paper proposes controlling the speed of the dc motor using a 4-quadrant controlled rectifier or phase controller using a programmable logic controller (PLC) and human machine interface (HMI) as the control center. The system design is implemented on a 1.3 HP separate amplifier dc motor. The proposed control system design is tested and validated at varying speeds. Variations in motor speed are set on the HMI screen according to needs. The test results show that the design of the dc motor speed control system using a four quadran phase controller has worked as desired. The speed of the motor can be controlled through the HMI display
Downloads
References
[1] A. Ma’arif and A. Çakan, “Simulation and arduino hardware implementation of dc motor control using sliding mode controller,” J. Robot. Control, vol. 2, no. 6, pp. 582–587, 2021, doi: 10.18196/jrc.26140.
[2] C. Martínez-García, C. Astorga-Zaragoza, V. Puig, J. Reyes-Reyes and F. López-Estrada, "A Simple Nonlinear Observer for State and Unknown Input Estimation: DC Motor Applications," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 4, pp. 710-714, April 2020, doi: 10.1109/TCSII.2019.2920609.
[3] M. I. Esario and M. Yuhendri, “Kendali Kecepatan Motor DC Menggunakan DC Chopper Satu Kuadran Berbasis Kontroller PI,” JTEV (Jurnal Tek. Elektro dan Vokasional), vol. 6, no. 1, p. 296, 2020, doi: 10.24036/jtev.v6i1.108005.
[4] M. M. R. Ahmed, A. A. Elemary, Z. M. Alaas, and A. M. Hamada, “Torque control of a 5 KW, 220 V separately excited DC motor using microcomputer,” Int. J. Power Electron. Drive Syst., vol. 14, no. 2, pp. 727–740, 2023, doi: 10.11591/ijpeds.v14.i2.pp727-740.
[5] I. Okoro and C. Enwerem, “Model-based Speed Control of a DC Motor Using a Combined Control Scheme,” IEEE PES/IAS PowerAfrica Conf. Power Econ. Energy Innov. Africa, PowerAfrica 2019, pp. 1–6, 2019, doi: 10.1109/PowerAfrica.2019.8928856.
[6] S. Sachit and B. R. Vinod, “MRAS Based Speed Control of DC Motor with Conventional PI Control — A Comparative Study,” Int. J. Control. Autom. Syst., vol. 20, pp. 1–12, 2022.
[7] F. Rahmadi and M. Yuhendri, “Kendali Kecepatan Motor DC Menggunakan Chopper DC Dua Kuadran Berbasis Kontroller PI,” JTEIN J. Tek. Elektro Indones., vol. 1, no. 2, p. 241, 2020, doi: https://doi.org/10.24036/jtein.v1i2.71.
[8] L. Zhang, J. Yang, and S. Li, “A Model-Based Unmatched Disturbance Rejection Control Approach for Speed Regulation of a Converter-Driven DC Motor Using Output-Feedback,” IEEE/CAA J. Autom. Sin., vol. 9, no. 2, pp. 365–376, 2022.
[9] N. L. Manuel, N. İnanç, and M. Lüy, “Control and performance analyses of a DC motor using optimized PIDs and fuzzy logic controller,” Results Control Optim., vol. 13, no. May, 2023, doi: 10.1016/j.rico.2023.100306.
[10] S. Hajari and O. Ray, “A Dynamic Voltage-Based Current Estimation Technique for DC Motor Speed Control Applications,” IEEE Sensors Lett., vol. 8, no. 2, 2024.
[11] F. Hanifah and M. Yuhendri, “Kontrol dan Monitoring Kecepatan Motor Induksi Berbasis Internet of Things,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 519–528, 2023
[12] M. A. Mhawesh, “Performance comparison between variants PID controllers and unity feedback control system for the response of the angular position of the DC motor,” Int. J. Electr. Comput. Eng., vol. 11, no. 1, pp. 802–814, 2021, doi: 10.11591/ijece.v11i1.pp802-814.
[13] T. H. Mohamed, M. A. M. Alamin, and A. M. Hassan, “Adaptive position control of a cart moved by a DC motor using integral controller tuned by Jaya optimization with Balloon effect,” Comput. Electr. Eng., vol. 87, no. July, 2020, doi: 10.1016/j.compeleceng.2020.106786.
[14] A. Salkic, H. Muhovic, and D. Jokic, “Siemens S7-1200 PLC DC Motor control capabilities,” IFAC-PapersOnLine, vol. 55, no. 4, pp. 103–108, 2022, doi: 10.1016/j.ifacol.2022.06.017.
[15] R. Saputra and M. Yuhendri, “Pembuatan Job Sheet Kendali Motor Servo Menggunakan Variable Speed Drive,” J. Pendidik. Tek. Elektro, vol. 04, no. 01, pp. 117–124, 2023.
[16] F. Liu, X. ming, D. Lei and X. He, "Design of DC motor operation monitoring system based on Matlab GUI," 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2021, pp. 1211-1215, doi: 10.1109/IAEAC50856.2021.9390686.
[17] I. Rifaldo and M. Yuhendri, “Sistem Monitoring Kecepatan Motor Induksi dengan HMI Berbasis PLC,” JTEIN J. Tek. Elektro Indones., vol. 3, no. 2, pp. 319–325, 2022.
[18] P. R. Babu et al., "Web Server Based Soft Starter for DC Shunt Motor," 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT), Kollam, India, 2023, pp. 1026-1031, doi: 10.1109/ICCPCT58313.2023.10245416.
[19] I. Ikhwan and M. Yuhendri, “Penyusunan Jobsheet Kendali Motor Servo Berbasis Human Machine Interface,” J. Pendidik. Tek. Elektro, vol. 4, no. 1, pp. 350–357, 2023, doi: 10.24036/jpte.v4i1.268.
[20] P. Wong et al., "Using Programmable Logic Controllers to Simulate Common Motor Load Curves in Industry," 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 2019, pp. 1-6, doi: 10.1109/ATEE.2019.8725017.
[21] M. H. Ridwan, M. Yuhendri, and J. Sardi, “Sistem Kendali Dan Monitoring Pompa Air Otomatis Berbasis Human Machine Interface,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 592–600, 2023.
[22] C. -C. Hsiao and H. -Y. Chen, "Development of Human-machine Interactive Interface for Hosiery Waterproof Coating Production Line," 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 2022, pp. 274-277, doi: 10.1109/ECICE55674.2022.10042839.
[23] S. Fajri and M. Yuhendri, “Monitoring Pembangkit Listrik Tenaga Angin Menggunakan Human Machine Interface,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 1, pp. 434–444, 2023.
[24] S. Anjeli and M. Yuhendri, “Kendali dan Monitoring Charger Baterai dari Panel Surya Berbasis Human Machine Interface,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 1, pp. 105–114, 2023.
[25] R. Nabil, Z. Mokhtar, and C. Soufyane, “An Efficient Fuzzy PI Approach to Real-time Control of a ROS Based Mobile Robot,” Prz. Elektrotechniczny, vol. 98, no. 2, pp. 1–5, 2022, doi: 10.15199/48.2022.02.01.
[26] B. Kaliappan, B. Srirevathi, S. M. Balaganesan and A. Rajesh, "Internet of Things (IoT) based BAT Algorithm with PIC Controller Optimization of BLDC Motor fed ZETA Converter," 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 2022, pp. 1-5, doi: 10.1109/PARC52418.2022.9726578.
[27] Y. A. Putra and M. Yuhendri, “Smart Monitoring Pompa Air Otomatis Berbasis Human Machine Interface Dan Internet Of Things,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 863–876, 2023.
[28] Y. B. Chu, Y. C. Zhang and Y. T. Lim, "Iot Based Real Time Power Consumption Monitoring and Characterization of Loaded DC Motor," 2023 11th International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Kuala Lumpur, Malaysia, 2023, pp. 30-35, doi: 10.1109/ICSGCE59477.2023.10420206.
[29] Y. D. Satriani and M. Yuhendri, “Kontrol Posisi Motor Servo Berbasis Human Machine Interface dan Internet of Things,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 949–956, 2023.
[30] E. Kougianos, S. P. Mohanty, G. Coelho, U. Albalawi and P. Sundaravadivel, "Design of a High-Performance System for Secure Image Communication in the Internet of Things," IEEE Access, vol. 4, pp. 1222-1242, 2016, doi: 10.1109/ACCESS.2016.2542800.
[31] A. F. Ikhfa and M. Yuhendri, “Monitoring Pemakaian Energi Listrik Berbasis Internet of Things,” JTEIN J. Tek. Elektro Indones., vol. 3, no. 1, pp. 257–266, 2022.
[32] M. Kande, A. J. Isaksson, R. Thottappillil and N. Taylor, "Rotating electrical machine condition monitoring automation—A review", Machines, vol. 5, no. 4, pp. 24, Oct. 2017.
[33] R. Mayangsari and M. Yuhendri, “Sistem Kontrol dan Monitoring Pembangkit Listrik Tenaga Surya Berbasis Human Machine Interface dan Internet of Thing,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 738-749–738 – 749, 2023.
[34] D. Ganga and V. Ramachandran, "IoT-Based Vibration Analytics of Electrical Machines," IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4538-4549, Dec. 2018, doi: 10.1109/JIOT.2018.2835724.
[35] O. Barybin, E. Zaitseva and V. Brazhnyi, "Testing the security ESP32 internet of things devices", 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S&T), pp. 143-146, October. 2019.
[36] F. Beltran-Carbajal, R. Tapia-Olvera, A. Valderrabano-Gonzalez, H. Yanez-Badillo, J. C. Rosas-Caro, and J. C. Mayo-Maldonado, “Closed-loop online harmonic vibration estimation in DC electric motor systems,” Appl. Math. Model., vol. 94, pp. 460–481, 2021, doi: 10.1016/j.apm.2021.01.021