Supervisory control and data acquisition system for solar panel based on Internet of things (IoT)

Authors

  • Muhammad Raihan Alfiansyah Author
  • Ta ali Author
  • Muldi Yuhendri Author
  • Juli Sardi Author

Keywords:

SCADA , Internet of things, PLC Siemens S7-1200, Node-RED, HMI

Abstract

Supervisory control and data acquisition (SCADA) system on IoT-based solar power plant using HMI, PC, and Smartphone interfaces. HMI uses KTP 700 Comfrot, Siemens S7-1200 PLC connected to the internet via Ngrok, using Siemens TIA Portal V17. The purpose of monitoring the realtime state of the PLTS such as the condition of batteries, solar panels, inverters and loads used and maintaining from troubleshooting. This research designs hardware and software devices to develop a SCADA system. including PLC, HMI, PC, battery, SCC, inverter, solar panel and sensor devices and other actuators are arranged in such a way. software design is carried out in TIA Portal to program PLC and HMI, Node Red as an implementation of the internet of things. in the research it can be concluded that the application of ngrok on the localhost system is very easy, because it does not require a homebase to connect with an external network. and the output of solar panels is not always monitored by the temperature and solar radiation of the SCADA system on solar power plants based on the internet of things. the implementation of the internet of things uses Node Red and Ngrok software as a link between localhost and external networks. So the internet of things in this test can be controlled and monitored remotely with a cacatan must always be connected to the internet. Monitoring, control and data access systems work well

Downloads

Download data is not yet available.

References

[1] F. Azizah and M. Yuhendri, “Solar Panel Monitoring and Control System Using Human Machine Interface,” Andalasian International Journal of Applied Science, Engineering and Technology, vol. 2, no. 03, pp. 149–158, 2022, doi: 10.25077/aijaset.v2i03.64.

[2] A. Khadra and R. Rammal, "SCADA System for Solar Backup Power System Automation," 2022 International Conference on Smart Systems and Power Management (IC2SPM), Beirut, Lebanon, 2022, pp. 75-79, doi: 10.1109/IC2SPM56638.2022.9988760.

[3] L. O. Aghenta and M. T. Iqbal, "Development of an IoT Based Open Source SCADA System for PV System Monitoring," 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 2019, pp. 1-4, doi: 10.1109/CCECE.2019.8861827

[4] H. Singh and N. Kumar, "PLC and SCADA based electricity supply switching with integration of Solar Cells," 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 2022, pp. 1-6, doi: 10.1109/DELCON54057.2022.9753014.

[5] H. Masrepol and M. Yuhendri, “Implementasi MPPT Panel Surya Berbasis Algoritma Perturbasi & Observasi (PO) Menggunakan Arduino,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 2, no. 2, pp. 162–167, 2021, doi: 10.24036/jtein.v2i2.155.

[6] V. Voicu, D. Petreus, E. Cebuc and R. Etz, "Industrial IoT (IIOT) Architecture for Remote Solar Plant Monitoring," 2022 21st RoEduNet Conference: Networking in Education and Research (RoEduNet), Sovata, Romania, 2022, pp. 1-4, doi: 10.1109/RoEduNet57163.2022.9921045.

[7] M. Kermani, S. Abbasi, E. Shirdare and L. Martirano, "Real-Time PLC-Based Control for Microgrid Operations Using SCADA System," 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 2023, pp. 1-6, doi: 10.1109/EEEIC/ICPSEurope57605.2023.10194668.

[8] E. Mustafa, M. Yuhendri, J. Sardi, and D. T. Yanto, “Kendali dan Monitoring Pembangkit Listrik Tenaga Surya Stand Alone Berbasis Human Machine Interface,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 4, no. 1, pp. 179–189, 2023.

[9] I. C. Hoarcă, "Energy management for a photovoltaic power plant based on SCADA system," 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 2021, pp. 1-9, doi: 10.1109/ECAI52376.2021.9515136.

[10] A. Dong, Y. Zhao, X. Liu, L. Shang, Q. Liu and D. Kang, "Fault Diagnosis and Classification in Photovoltaic Systems Using SCADA Data," 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Shanghai, China, 2017, pp. 117-122, doi: 10.1109/SDPC.2017.31.

[11] S. Samara and E. Natsheh, "Intelligent Real-Time Photovoltaic Panel Monitoring System Using Artificial Neural Networks," IEEE Access, vol. 7, pp. 50287-50299, 2019, doi: 10.1109/ACCESS.2019.2911250.

[12] F. J. Sánchez-Pacheco, P. J. Sotorrío-Ruiz, J. R. Heredia-Larrubia, F. Pérez-Hidalgo and M. S. de Cardona, "PLC-Based PV Plants Smart Monitoring System: Field Measurements and Uncertainty Estimation," IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 9, pp. 2215-2222, Sept. 2014, doi: 10.1109/TIM.2014.2308972.

[13] M. Yuhendri and G. S. Putra, “Implementasi Sistem Kendali MPPT Panel Surya Berbasis Algoritma Incremental Conductance,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 1, no. 2, pp. 218–223, 2020, doi: 10.24036/jtein.v1i2.72.

[14] A. Nirmal, A. K. K. Kyaw, W. Jianxiong, K. Dev, X. Sun and H. V. Demir, "Light Trapping in Inverted Organic Photovoltaics With Nanoimprinted ZnO Photonic Crystals," IEEE Journal of Photovoltaics, vol. 7, no. 2, pp. 545-549, March 2017, doi: 10.1109/JPHOTOV.2017.2650560.

[15] M. Ma, Z. Zhang, P. Yun, Z. Xie, H. Wang and W. Ma, "Photovoltaic Module Current Mismatch Fault Diagnosis Based on I-V Data," IEEE Journal of Photovoltaics, vol. 11, no. 3, pp. 779-788, May 2021, doi: 10.1109/JPHOTOV.2021.3059425.

[16] F. Hanifah and M. Yuhendri, “Kontrol dan Monitoring Kecepatan Motor Induksi Berbasis Internet of Things,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 4, no. 2, pp. 519–528, 2023.

[17] E. Lázár, R. Etz, D. Petreuş, T. Pătărău and I. Ciocan, "SCADA development for an islanded microgrid," 2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME), Brasov, Romania, 2015, pp. 147-150, doi: 10.1109/SIITME.2015.7342314.

[18] I. Ahmed and F. Ahmed, "Priority Based Hybrid Renewable Energy Monitoring and Management System with SCADA Autonomous Operation Based on Demand Response," 2022 12th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 2022, pp. 409-412, doi: 10.1109/ICECE57408.

[19] M. H. Ridwan, M. Yuhendri, and J. Sardi, “Sistem Kendali Dan Monitoring Pompa Air Otomatis Berbasis Human Machine Interface,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 4, no. 2, pp. 592–600, 2023

[20] C. A. Osaretin, M. Zamanlou, M. T. Iqbal and S. Butt, "Open Source IoT-Based SCADA System for Remote Oil Facilities Using Node-RED and Arduino Microcontrollers," 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 2020, pp. 0571-0575, doi: 10.1109/IEMCON51383.2020 .9284826. .

[21] C. Ndukwe, M. T. Iqbal and J. Khan, "Development of a Low-cost LoRa based SCADA system for Monitoring and Supervisory Control of Small Renewable Energy Generation Systems," 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 2020, pp. 0479-0484, doi: 10.1109/IEMCON51383.2020.9284933.

[22] M. Alfa Z Fikri et al., “Sistem SCADA pada miniatur Smart Home Bertenaga Surya,” J. FORTECH, vol. 3, no. 2, pp. 93–100, 2023, doi: 10.56795/fortech.v3i2.106.

[23] R. Parlika, H. Khariono, H. Ananta Kusuma, M. Risalul Abrori, and M. Ainur Rofik, “Implementasi Akses Mysql dan Web Server Lokal Melalui Jaringan Internet Menggunakan Ngrok,” JIKO (Jurnal Inform. dan Komputer), vol. 3, no. 3, pp. 131–136, 2020, doi: 10.33387/jiko.v3i3.1799.

[24] A. Lindo and M. Yuhendri, “Sistem Kendali Daya Maksimum Panel Surya Berbasis Fuzzy Logic Controller,” JTEIN J. Tek. Elektro Indones., vol. 3, no. 1, pp. 102–110, 2022, doi: 10.24036/jtein.v3i1.207.

[25] M. Suyanto, S. Priyambodo, P. E.P, and A. Purnama Aji, “Optimalisasi Pengisian Accu Pada Sistem Pembangkit Listrik Tenaga Surya (PLTS) Dengan Solar Charge Controller (MPPT),” J. Teknol., vol. 15, no. 1, pp. 22–29, 2022, doi: 10.34151/jurtek.v15i1.3929.

[26] M. Etezadinejad, B. Asaei, S. Farhangi and A. Anvari-Moghaddam, "An Improved and Fast MPPT Algorithm for PV Systems Under Partially Shaded Conditions," IEEE Transactions on Sustainable Energy, vol. 13, no. 2, pp. 732-742, April 2022, doi: 10.1109/TSTE.2021.3130827.

[27] S. Xu, R. Shao, B. Cao and L. Chang, "Single-phase grid-connected PV system with golden section search-based MPPT algorithm," Chinese Journal of Electrical Engineering, vol. 7, no. 4, pp. 25-36, Dec. 2021, doi: 10.23919/CJEE.2021.000035.

[28] R. Mayangsari and M. Yuhendri, “Sistem Kontrol dan Monitoring Pembangkit Listrik Tenaga Surya Berbasis Human Machine Interface dan Internet of Thing,” JTEIN J. Tek. Elektro Indones., vol. 4, no. 2, pp. 738-749–738 – 749, 2023.

[29] R. Dubey et al., "Measurement of temperature coefficient of photovoltaic modules in field and comparison with laboratory measurements," 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 2015, pp. 1-5, doi: 10.1109/PVSC.2015.7355852.

[30] Y. Hishikawa et al., "Voltage-Dependent Temperature Coefficient of the I–V Curves of Crystalline Silicon Photovoltaic Modules," IEEE Journal of Photovoltaics, vol. 8, no. 1, pp. 48-53, Jan. 2018, doi: 10.1109/JPHOTOV.2017.2766529.

[31] S. Priyadarshi, S. Bhaduri and N. Shiradkar, "IoT Based, Inexpensive System for Large Scale, Wireless, Remote Temperature Monitoring of Photovoltaic Modules," 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 2018, pp. 0749-0752, doi: 10.1109/PVSC.2018.8547354.

[32] M. Libra, T. Petrík, V. Poulek, I. I. Tyukhov and P. Kouřím, "Changes in the Efficiency of Photovoltaic Energy Conversion in Temperature Range With Extreme Limits," IEEE Journal of Photovoltaics, vol. 11, no. 6, pp. 1479-1484, Nov. 2021, doi: 10.1109/JPHOTOV.2021.3108484.

[33] F. Rahmaniah, W. Zhang and S. E. R. Tay, "State Space Transient Model for Photovoltaic Module Temperature Estimation," 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 2020, pp. 2505-2508, doi: 10.1109/PVSC45281.2020.9300581.

[34] Z. Zhen, X. Taoyun, S. Yanping, L. Wang, P. Jia and J. Yu, "A Method to Test Operating Cell Temperature for BIPV Modules," IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 272-277, Jan. 2016, doi: 10.1109/JPHOTOV.2015.2501719

Downloads

Published

2024-07-01

How to Cite

Supervisory control and data acquisition system for solar panel based on Internet of things (IoT). (2024). Journal of Industrial Automation and Electrical Engineering, 1(1), 145-154. https://jiaee.ppj.unp.ac.id/index.php/jiaee/article/view/38