Maximum power control system for solar panels using the Sliding Mode Controller (SMC) method

Authors

  • Ksatria Nugraha Universitas Negeri Padang Author
  • Muldi Yuhendri Department of Electrical Engineering, Universitas Negeri Padang, Indonesia Author

DOI:

https://doi.org/10.24036/jiaee.v2.i2.pp98-105

Keywords:

Solar panel, MPPT, Sliding Mode Controller , Boost converter, Arduino Mega 2560, PWM

Abstract

Solar energy is a promising renewable energy source that offers solutions to the energy crisis and carbon emission reduction, but the power output generated by solar panels is fluctuating due to changes in light intensity and ambient temperature. This study develops a Maximum Power Point Tracking (MPPT) control system using the Sliding Mode Controller (SMC) method to optimize the power output of solar panels. The system design includes the use of a boost converter as a voltage regulator and an Arduino Mega 2560 microcontroller as the control center, with the SMC algorithm developed in Simulink MATLAB to generate a PWM signal that controls the duty cycle. Test results show that the SMC algorithm can achieve a maximum power point of 30 watts in 20 seconds, faster and more efficient than the Perturb and Observe (P&O) method, which only reaches 25 watts in 30 seconds, and demonstrates lower and more stable power oscillations. The boost converter was also proven effective in increasing the output voltage of the solar panel. Thus, the SMC-based MPPT system demonstrates superior performance in efficiency and adaptability to dynamic environmental conditions, making it suitable for application in the development of more reliable solar energy systems

 

Downloads

Download data is not yet available.

References

[1] A. I. Osman et al., “Cost, environmental impact, and resilience of renewable energy under a changing climate: a review,” Environ. Chem. Lett., vol. 21, no. 2, pp. 741–764, 2023, doi: 10.1007/s10311-022-01532-8.

[2] R. Ridlo and A. Hakim, “ANDASIH Jurnal Pengabdian kepada Masyarakat Model Energi Indonesia, Tinjauan Potensi Energy Terbarukan Untuk Ketahanan,” ANDASIHJurnal Pengabdi. Kpd. Masy., vol. 1, no. 1, p. 1, 2020.

[3] U. Arachchige and S. R. . Weliwaththage, “(PDF) Solar Energy Technology,” J. Res. Technol. Eng., vol. 1, no. 3, pp. 67–75, 2020.

[4] A. Lindo and M. Yuhendri, “Sistem Kendali Daya Maksimum Panel Surya Berbasis Fuzzy Logic Controller,” JTEIN J. Tek. Elektro Indones., vol. 3, no. 1, pp. 102–110, 2022, doi: 10.24036/jtein.v3i1.207.

[5] D. S. Vijayan et al., “Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review,” Energies, vol. 16, no. 18, pp. 1–33, 2023, doi: 10.3390/en16186579.

[6] I. Kurniawan, M. Yuhendri, A. Hendra, and R. Hidayat, “Implementation of Maximum power control of Solar Panels using Modified Perturb and Observe Algorithm based on Adaptive Neuro Fuzzy Inference System,” J. Ind. Autom. Electr. Eng., vol. 01, no. 01, pp. 200–208, 2024.

[7] N. S. M. N. Izam, Z. Itam, W. L. Sing, and A. Syamsir, “Sustainable Development Perspectives of Solar Energy Technologies with Focus on Solar Photovoltaic—A Review,” Energies, vol. 15, no. 8, pp. 1–15, 2022, doi: 10.3390/en15082790.

[8] G. Dileep and S. N. Singh, “Application of soft computing techniques for maximum power point tracking of SPV system,” Sol. Energy, vol. 141, pp. 182–202, 2017, doi: 10.1016/ j.solener. 2016.11.034.

[9] H. Masrepol and M. Yuhendri, “Implementasi MPPT Panel Surya Berbasis Algoritma Perturbasi & Observasi (PO) Menggunakan Arduino,” JTEIN J. Tek. Elektro Indones., vol. 2, no. 2, pp. 162–167, 2021, doi: 10.24036/jtein.v2i2.155.

[10] R. I. Jabbar, S. Mekhilef, M. Mubin, and K. K. Mohammed, “A Modified Perturb and Observe MPPT for a Fast and Accurate Tracking of MPP Under Varying Weather Conditions,” IEEE Access, vol. 11, no. July, pp. 76166–76176, 2023, doi: 10.1109/ACCESS.2023.3297445.

[11] P. Fernández-Bustamante, I. Calvo, E. Villar, and O. Barambones, “Centralized MPPT based on Sliding Mode Control and XBee 900 MHz for PV systems,” Int. J. Electr. Power Energy Syst., vol. 153, no. July, p. 109350, 2023, doi: 10.1016/j.ijepes.2023.109350.

[12] I. Winarno and L. Natasari, “Maximum Power Point Tracker (MPPT) Berdasarkan Metode Perturb and Observe Dengan Sistem Tracking Panel Surya Single Axis,” Umj, no. November, pp. 1–9, 2017.

[13] M. R. Mostafa, N. H. Saad, and A. A. El-sattar, “Tracking the maximum power point of PV array by sliding mode control method,” Ain Shams Eng. J., vol. 11, no. 1, pp. 119–131, Mar. 2020, doi: 10.1016/j.asej.2019.09.003.

[14] A. Faizal and B. Setyaji, “Desain Maximum Power Point Tracking (MPPT) pada Panel Surya Menggunakan Metode Sliding Mode Control,” J. Sains, Teknol. dan Ind., vol. 14, no. 1, pp. 22–31, 2019.

[15] M. Farhat, O. Barambones, and L. Sbita, “A new maximum power point method based on a sliding mode approach for solar energy harvesting,” Appl. Energy, vol. 185, pp. 1185–1198, Jan. 2017, doi: 10.1016/j.apenergy.2016.03.055

Downloads

Published

2025-12-01

How to Cite

Maximum power control system for solar panels using the Sliding Mode Controller (SMC) method. (2025). Journal of Industrial Automation and Electrical Engineering, 2(2), 98-105. https://doi.org/10.24036/jiaee.v2.i2.pp98-105

Similar Articles

51-60 of 62

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>